Физиологические особенности сердечной мышцы кратко. Строение сердечной мышцы. Движение крови по сосудам


Основными свойствами сердечной мышцы, определяющими непрерывное ритмическое сокращение сердца в течение всей жизни организма, являются автоматия, возбудимость, проводи­мость и сократимость.

Автоматия. Под автоматией понимают способность сердеч­ной мышцы ритмически возбуждаться и сокращаться без каких-иибо внешних по отношению к сердцу воздействий, т.е. без участия нервной системы и гуморальных факторов, доставля­емых к сердцу кровью.

Доказательством автоматии сердца послужили следующие на­блюдения и эксперименты.

Изолированное сердце, т. е. выведенное из организма и поме­щенное в питательный раствор, продолжает самопроизвольно со­кращаться. Даже разрезанное на кусочки, оно сокращается в том же ритме, что и у здорового животного. Если у животного денер-вировать сердце, т. е. перерезать все нервные стволы, подходящие к сердцу, оно продолжает сокращаться.

На способности работать без воздействия внешних раздражи­телей основана пересадка сердца. Оживление остановившегося сердца достигается восстановлением спонтанной активности сердца, его автоматии.

В чем причина такого уникального свойства сердца? У боль­шинства беспозвоночных животных автоматия связана с нервны­ми ганглиями, расположенными вблизи сердца, т. е. имеет ней-рогенную природу. У всех же позвоночных животных и у части беспозвоночных автоматия сердца обусловлена не нервными, а мышечными клетками, которые самопроизвольно деполяризу­ются после каждого потенциала действия. Эти клетки называ­ются пейсмекерами, или «задающими сердечный ритм», или во­дителями сердечного ритма. Такая теория автоматии сердца на­зывается миогенной.

Способностью к автоматии обладают атипичные мышечные клетки, составляющие проводящую систему сердца.

Ведущую роль в автоматии играет синусный узел. Он обладает наиболее высокой активностью по сравнению с други­ми участками проводящей системы, частота импульсации в нем наиболее высокая, и он задает определенную частоту сокращения сердца в состоянии физиологического покоя. Такой ритм обычно называют синусным ритмом, а синусный узел - водителем ритма сердца первого порядка.

Если отделить лигатурой синусный узел от предсердий (опыт Станниуса), то обычно сердце останавливается. Однако через не­которое время оно снова начинает сокращаться, но в более редком ритме. Этот ритм «задает» следующий узел проводящей систе­мы - атриовентрикулярный. Более редкие сокращения сердца обусловлены тем, что возбудимость атриовентрикулярного узла меньше, чем синусного. Этот узел называют водителем ритма сердца второго порядка. Если же и атриовентрикулярный узел пе­рестает генерировать возбуждение, то водителем ритма сердца ста­новится пучок Гиса, но его возбудимость еще меньше; пучок Гиса называют водителем ритма третьего порядка.

В обычных условиях атриовентрикулярный узел и пучок Гиса только проводят возбуждение от синусного узла. Их собственная автоматия как бы подавлена главным пейсмекером, и только при развитии патологического процесса, прекращающего функцию


синусного узла, свой ритм навязывают нижележащие узлы. Они являются латентными, или скрытыми, или потенциальными пейсмекерами.

Какова природа автоматии? Методами электрофизиологии ус­тановлено, что потенциал действия (ПД) клеток проводящей сис­темы отличается от других мышечных и нервных клеток. Во время расслабления сердца - диастолы - начинается медленно нараста­ющая деполяризация мембраны, которая затем переходит в фазу быстрой деполяризации (рис. 6.3, А). Фаза реполяризации в пейс-мекерах довольно продолжительная, в пейсмекерах синусного узла она имеет выраженное плато вместо пика потенциала. Сразу пос­ле возвращения мембранного потенциала к уровню потенциала покоя снова начинается медленная диастолическая деполяриза­ция мембраны, и когда разность потенциалов между наружной и внутренней поверхностями мембраны уменьшается до определен­ного критического, или порогового уровня, внезапно возникает новый крутой сдвиг электрического заряда клетки, что свидетель­ствует о ее возбуждении.






Интервал между двумя ПД зависит от длительности медлен­ной диастолической деполяризации, ее величины и порогового уровня сердечного ПД. Если скорость деполяризации уменыиает-

Ся (например, при охлаждении синусного узла), то пороговый уровень деполяризации наступает позднее, частота ПД и сокраще­ний сердца уменьшаются. При возрастании скорости деполяриза­ции мембраны, напротив, пороговый уровень деполяризации воз­никает раньше и это приводит к учащению возбуждения сердца. Отчасти этим объясняется учащение сердечной деятельности при повышении температуры тела.

Медленная диастолическая деполяризация обусловлена осо­бенностями ионной проницаемости мембраны пейсмекеров. Как и в других клетках, электрические процессы в мембранах миокар­да являются следствием пассивного и активного перемещения ионов натрия и калия через тончайшие каналы (поры) в мембра­не, проницаемость которых регулируется заряженными частица­ми - ионами Са 2+ или Мп 2 . Медленная диастолическая депо­ляризация объясняется тем, что во время реполяризации часть натриевых каналов не инактивируется и осуществляется медлен­ный вход сначала натрия, а затем кальция в мембрану. Когда ко­личество ионов натрия, проникших в клетку, снизит мембранный потенциал до критического уровня, наступает быстрая фаза деполя­ризации и ПД достигает своего максимального уровня.

В теории об автоматии пейсмекеров еще много неясного, и раскрытие тончайших механизмов электрических процессов, происходящих в сердце, - актуальная задача современной кар­диологии.

Возбудимость. Возбудимость - свойство сердечной мышцы переходить в состояние возбуждения под влиянием различных раздражителей.

В естественных условиях раздражителем является ПД, возни­кающий в синусном узле и распространяющийся по проводя­щей системе сердца до рабочих кардиомиоцитов. При некоторых заболеваниях сердца раздражение может возникать в других его участках, которые генерируют собственные ПД, и тогда сердеч­ный ритм будет нарушен из-за взаимодействия разных по частоте и фазе ПД. В экспериментах на животных в качестве раздражите­лей могут быть использованы механические, термические или хи­мические воздействия, если их величина превышает порог возбу­димости сердца.

При болезнях сердца, сопровождающихся нарушением сердеч­ного ритма, больным вживляют в сердце миниатюрные электро­ды, питающиеся от батареек. Импульсы тока подаются непосред­ственно на сердце и возбуждают в нем ритмические импульсы. При внезапной остановке сердца или нарушении синхронизации отдельных мышечных волокон возможно воздействие на сердце прямо через кожный покров сильным коротким электрическим разрядом напряжением в несколько кВт. Это вызывает одновре­менное возбуждение всех мышечных волокон, после чего восста­навливается работа сердца.


Во время возбуждения в сердце возникают физико-хими­ческие, морфологические и биохимические изменения, кото­рые приводят к сокращению рабочего миокарда. Одними из ранних признаков возбуждения являются активация натриевых каналов и диффузия ионов натрия из межклеточной жидкости через мембрану, что приводит к ее деполяризации и возник­новению ПД.

В клетках рабочего миокарда ПД равен 80...90 мВ, при ПД Ю0...120мВ медленная диастолическая деполяризация в отличие от пейсмекеров отсутствует. Скорость нарастания деполяризации велика, восходящая часть ПД очень крутая, но реполяризация протекает замедленно, и мембрана остается деполяризованной в течение сотен миллисекунд (см. рис. 6.3, Б).

Таким образом, длительность ПД в миокардиоцитах во много раз больше, чем в других мышечных волокнах. Благодаря этому все мышечные волокна предсердий или желудочков успевают со­кратиться до того, как какое-либо из этих волокон начнет рас­слабляться. Поэтому фаза реполяризации продолжается в течение всей систолы. Во время развития ПД возбудимость сердца, как и других возбудимых тканей, изменяется. Во время деполяри­зации возбудимость сердца резко снижается. Это - фаза аб­солютной рефрактерности. Причиной ее является инактивация натриевых каналов, что прекращает поступление новых ионов натрия в мембрану. Если в скелетной мышце абсо­лютная рефрактерность очень кратковременная, измеряется деся­тыми долями миллисекунды и заканчивается в начале сокращения мышцы, то в сердце абсолютная невозбудимость продолжается весь период систолы. Практически это означает, что если во время сис­толы на сердце действует какой-либо раздражитель, даже сверх­пороговый, то сердце на него не реагирует. Поэтому в отличие от скелетных мышц сердце не способно к тетаническим сокращениям и защищено от слишком быстрого повторного возбуждения и со­кращения. Все сокращения сердечной мышцы одиночные. При очень большой частоте импульсов возбуждения сердце сокращает­ся не на каждый ПД, а на только те из них, которые поступают по окончании абсолютной рефрактерности.

Во время нисходящей фазы реполяризации, которая совпада­ет с началом расслабления сердечной мышцы, возбудимость серд­ца начинает восстанавливаться. Это - фаза относитель­ной рефрактерности. Если в начале диастолы на сердце действует какой-либо дополнительный раздражитель, то сердце готово ответить на него новой волной возбуждения. Внеочеред­ное возбуждение и сокращение сердца под действием раздра­жителя в период относительной рефрактерности называется экстрасистолой.

Если очаг внеочередного возбуждения находится в синусном узле, то это приводит к преждевременному возникновению сер-

дечного цикла, при этом после­довательность сокращений пред­сердий и желудочков не изменя­ется. Если же возбуждение возни­кает в желудочках, то после вне­очередного сокращения (экстра­систолы) появляется удлинен­ная пауза. Интервал между экст­расистолой и следующей (очередной) систолой желудочков на­зывается компенсаторной паузой (рис. 6.4.).

Компенсаторная пауза объясняется тем, что экстрасистола, как и всякое сокращение сердечной мышцы, сопровождается рефрак­терной паузой. Очередной импульс, возникающий в синусном узле, приходит в желудочки во время абсолютной рефрактерное™ и не вызывает их сокращения. Новое сокращение наступит лишь в ответ на следующий импульс, когда возбудимость миокарда вос­становится.

После относительной рефрактерности в сердце наступает очень короткий период повышенной возбудимости - экзаль­тации, когда сердце готово ответить даже на подпороговое раздражение.

Проводимость. Проводимость - свойство сердечной мышцы проводить возбуждение.

Как уже сказано, импульс возбуждения (ПД), возникая в пейс-мекерах синусного узла, распространяется сначала на предсер­дия. В предсердиях, где очень небольшое количество проводя­щих атипичных мышечных волокон, возбуждение распространя­ется не только по ним, но и по рабочим кардиомиоцитам. Это объясняет небольшую скорость распространения возбуждения в предсердиях.

Поскольку синусный узел расположен в правом предсердии, а скорость передачи ПД невелика, то возбуждение правого предсер-


дия начинается немного раньше, чем левого. Сокращение же ле­вого и правого предсердий происходит одновременно.

После того как возбуждение охватит мышцы предсердий, они сокращаются, а возбуждение концентрируется и задерживается в атриовентрикулярном узле. Атриовентрикулярная задержка длится до окончания сокращения предсердий, и только после этого воз­буждение переходит на пучок Гиса. Таким образом, биологическое значение атриовентрикулярной задержки заключается в обеспече­нии последовательности сокращений предсердий и желудочков. Одновременное их сокращение иногда бывает при очень серьезной патологии, когда возбуждение возникает не в синусном узле, а в ат­риовентрикулярном и распространяется в обе стороны от атриовен-трикулярного узла - и в предсердия, и в желудочки. В таком случае наступает резкое нарушение гемодинамики в сердце.

Механизмы атриовентрикулярной задержки не выяснены. Воз­можно, влияет низкая амплитуда ПД в клетках-пейсмекерах дан­ного узла, сильная натриевая инактивация, большое сопротивле­ние межклеточных контактов.

Далее возбуждение распространяется по пучку Гиса, ножкам пучка Гиса и волокнам Пуркинье. Волокна Пуркинье контактиру­ют с сократительными волокнами миокарда, и возбуждение пере­дается с проводящей системы на рабочие мышцы.

Скорость распространения возбуждения в сердце следующая: от синусного узла до атриовентрикулярного узла - 0,5...0,8 м/с; в атриовентрикулярном узле - 0,02...0,05; по проводящей сис­теме желудочков - до 4,0; в сократительной мышце желудоч­ков - 0,4 м/с.

Непосредственная связь проводящей системы сердца с рабочи­ми кардиомиоцитами осуществляется с помощью многочисленных разветвлений волокон Пуркинье. Передача сигналов происходит электрическим путем с небольшой задержкой. Эта задержка воз­буждения способствует суммированию импульсов, неодновременно поступающих по волокнам Пуркинье, и обеспечивает лучшую син­хронизацию процесса возбуждения рабочего миокарда.

В рабочем миокарде имеются контакты как между торцами, так и боковыми поверхностями волокон. Поэтому возбуждение от ос­новных стволов проводящей системы (ножек пучка Гиса) практи­чески одновременно распространяется на правый и левый желу­дочки, обеспечивая их одновременное сокращение.

Направление возбуждения внутри желудочков различно у жи­вотных разного вида. Так, у собак возбуждение вначале возникает на расстоянии нескольких миллиметров от внутренней поверхно­сти мышечной стенки, а затем переходит к эндокарду и эпикарду. У копытных (у коз) направление распространения возбуждения в толще мышечной стенки меняется много раз, и множество воло­кон в районах эндокарда, эпикарда и в глубине стенки активиру­ется практически одновременно.

В межжелудочковой перегородке возбуждение начинается в
центральной части и движется к верхушке и атриовентрикулярной
перегородке, причем верхняя часть желудочков активируется поз- ]
же; однако на правой и левой сторонах межжелудочковой перего­
родки возбуждение возникает одновременно. j

Особенности распространения возбуждения в сердце име­ют значение при анализе электрокардиограммы - записи био­токов сердца.

Сократимость. Сокращение - специфический признак воз­буждения сердечной мышцы. Как и в других мышцах, сокращение сердечных мышечных волокон начинается после распространения потенциала действия по поверхности клеточных мембран и явля­ется функцией миофибрилл. Сократительная система миофиб-рилл представлена четырьмя белками - актином, миозином, тро-понином и тропомиозином. Сокращение миофибрилл сердца в принципе не отличается от сокращений скелетных мышц соглас­но теории скольжения протофибрилл Хаксли.

Суть теории Хаксли заключается в скольжении тонких актино-вых нитей в промежутки между толстыми миозиновыми нитями, ; что приводит к укорочению саркомера. При расслаблении мышцы актиновые нити отодвигаются назад, занимая исходное положение. В механизме скольжения актиновых нитей имеет значение каль­ций, депонированный в саркоплазматическом ретикулуме.

Последовательность электрических и механических процессов при сокращении сердечных мышечных волокон в настоящее вре­мя представляется следующим образом. Потенциал действия, воз­никший на поверхности мембраны мышечного волокна, по попе­речным Т-трубочкам, которые являются впячиваниями наружной мембраны, достигает системы поперечных трубочек, соединенных с цистернами саркоплазматического ретикулума. Полости сарко-плазматического ретикулума не сообщаются ни с Т-трубочками, ни с интерстициальной жидкостью и заполнены раствором с вы­соким содержанием ионов кальция. Полости Т-трубочек имеют такой же состав, что и межклеточная жидкость.

Во время возбуждения активируются натриевые каналы в мембра­нах Т-трубочек и в миоплазму входят ионы натрия и кальция из меж­клеточной жидкости. Большая часть входящего кальция не участвует в сокращении миофибрилл, а пополняет его запасы в саркоплазма­тическом ретикулуме. Под воздействием потенциала действия повы­шается проницаемость мембраны саркоплазматического ретикулума и ионы кальция вьщеляются из него в миоплазму. Ионы кальция связываются с тропонином, что вызывает конформационные изме­нения в его молекуле. Сдвиг тропонин-тропомиозинового стержня I обеспечивает взаимодействие нитей актина и миозина (напомним, Щ что в расслабленной мышце актиновые волокна прикрыты молеку- 1 лами тропонина и тропомиозина, образующими комплекс, препят­ствующий скольжению протофибрилл).


После освобождения актиновых нитей от блокировки тропо-миозиновым комплексом миозиновые головки присоединяются к соответствующему центру актиновых нитей под углом 90°. Затем наступает спонтанный поворот головки на 45°, развивается напря­жение и происходит продвижение актиновой нити на один шаг. Эти процессы осуществляются за счет энергии АТФ, причем рас­пад АТФ катализируется актомиозиновым комплексом, обладаю­щим АТФ-азной активностью.

Когда возбуждение прекращается, содержание ионов кальция в миоплазме снижается вследствие работы кальциевого насоса и закачивания кальция в саркоплазматический ретикулум, причем на работу кальциевого насоса также затрачивается энергия АТФ. В результате снижения содержания кальция в миоплазме тропо-миозиновый комплекс защищает активные центры актомиозино-вых нитей. Нити миозина и актина восстанавливают исходное по­ложение, и мышца расслабляется.

Изложенная теория сокращения сердечной мышцы во многом объясняет экспериментальные и клинические наблюдения о влия­нии кальция и магния - его антагониста на работу сердца. Извест­но, что при перфузии изолированного сердца раствором, не содер­жащим кальция, оно останавливается, а при добавлении кальция в перфузионный раствор сокращения восстанавливаются. Известно также, что сердечные глюкозиды (например, препараты наперстян­ки) увеличивают проницаемость мембран для кальция и тем самым восстанавливают транспорт кальция между саркоплазматическим ретикулумом, наружной мембраной и миоплазмой.

Согласуется с теорией мышечного сокращения и благоприятное влияние на сердце макроэргических веществ, энергия которых ис­пользуется не только для механического сокращения, но и для ра­боты ионных насосов - кальциевого и калиево-натриевого.

Сократительные свойства сердечной мышцы несколько отли­чаются от скелетных. Если скелетная мышца реагирует на раздра­жение в соответствии с его силой, то сердечная мышца подчиня­ется закону Боудича «все или ничего». Его суть заключается в том, что на подпороговые раздражения сердце не сокращается («ниче­го»), а на пороговое раздражение отвечает максимальным сокра­щением («все»), и увеличение силы раздражителя не приводит к увеличению силы сокращения.

В скелетных мышцах закону «все или ничего» подчиняются отдельные мышечные волокна. Дело в том, что потенциал дей­ствия вызывает освобождение кальция из саркоплазматического ретикулума равномерно по всей длине волокна, поэтому оно со­кращается полностью. Но в скелетной мышце имеются волокна с разной степенью возбудимости, поэтому при слабом раздражении сокращаются не все волокна и суммарное сокращение оказывает­ся небольшим. В сердечной же мышце волокна рабочего, т. е. со­кратительного, миокарда соединены межклеточными контактами


(выростами плазматических мембран), что способствует практи­чески одновременному распространению потенциала действия по всей мышце, и она возбуждается и сокращается как единый орган, 1 являясь функциональным синцитием.

Закон Боудича является скорее правилом с определенными ог­раничениями. При подпороговом раздражении сокращение, дей­ствительно, не возникает, но в это время начинается активация натриевых каналов и повышается возбудимость миокардиоцитов. Возникающие местные потенциалы могут суммироваться и вы­звать распространяющийся потенциал действия. С другой сторо­ны, сила сокращения сердца, как хорошо известно, непостоянна и может изменяться в различных условиях жизни.

Другая характерная особенность сердечной мышцы заключает­ся в том, что сила сокращения сердца зависит от степени растяже­ния мышечных волокон во время диастолы, когда полости запол­няются кровью. Это - закон Франка - Старлинга. Указанная за­кономерность объясняется тем, что при растяжении сердца кро­вью во время диастолы актиновые нити несколько вытягиваются из промежутков между миозиновыми, и при последующем сокра­щении возрастает число генерирующих силу поперечных мости­ков. Кроме того, при растягивании сердечной мышцы в ней повы­шается сопротивление упругих элементов, и во время сокращения они играют роль «пружины», увеличивая силу сокращения.

Особенно важное значение закон Франка - Старлинга имеет во время усиленной работы сердца, когда возрастает объем крови, по­ступающей в него во время диастолы. Увеличение силы сокращения приводит к тому, что вся кровь выбрасывается при систоле желудоч­ков в артериальные сосуды, иначе после каждого сокращения в серд­це оставалась бы значительная порция крови. При отсутствии боль­шой нагрузки и небольшом объеме кровотока сила сокращения серд­ца умеренная. Таким образом сердце способно регулировать в извест­ных пределах силу сокращения в зависимости от объема кровотока.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-01

ФИЗОЛОГИЧЕСКИЕ СВОЙСТВА СЕРДЦА

Автоматией сердца называется его способность к ритмическому сокращению без внешних раздражений под влиянием импульсов, возникающих в самом органе. Возбуждение в сердце возникает в месте впадения полых вен в правое предсердие, где находится так называемый синоатриальный узел, являющийся главным водителем ритма сердца. Далее возбуждение по предсердиям распространяется до атриовентрикулярного узла, расположенного в меж предсердной перегородке правого предсердия, затем по пучку Гисса, его ножкам и волокнам Пуркинье оно проводится к мускулатуре желудочков.

Автоматия обусловлена изменением мембранных потенциалов в водителе ритма, что связано со сдвигом концентрации ионов калия и натрия по обе стороны деполяризованных клеточных мембран. На характер проявления автоматии влияет содержание солей кальция в миокраде, рН внутренней среды и ее температура, некоторые гормоны.

Возбудимость сердца проявляется в возникновении возбуждения при действии на него электрических, химических, термических и других раздражителей. В основе процесса возбуждения лежит появление отрицательного электрического потенциала в первоначально возбужденном участке, при этом сила раздражителя должна быть не менее пороговой. Сердце реагирует на раздражитель по закону «Все или ничего», т. е. или не отвечает на раздражение, или отвечает сокращением максимальной силы. Однако этот закон проявляется не всегда. Степень сокращения сердечной мышцы зависит не только от силы раздражителя, но и от величины ее предварительного растяжения, а также от температуры и состава питающей ее крови.

Возбудимость миокарда непостоянна. Б начальном периоде возбуждения сердечная мышца невосприимчива к повторным раздражениям, что составляет фазу абсолютной рефрактерности, равную по времени систоле сердца. Вследствие достаточно длительного периода абсолютной рефрактерности сердечная мышца не может сокращаться по типу тетануса, что имеет исключительно важное значение для координации работы предсердий и желудочков.

С началом расслабления возбудимость сердца начинает восстанавливаться и наступает фаза относительной рефрактерности. Поступление в этот момент дополнительного импульса способно вызвать внеочередное сокращение сердца - экстрасистолу. При этом период, следующий за экстрасистолой, длится больше времени, чем обычно, и называется компенсаторной паузой. После фазы относительной рефрактерности наступает период повышенной возбудимости. По времени он совпадает с диастолическим расслаблением и характеризуется тем, что импульсы даже небольшой силы могут вызвать сокращение сердца.

Проводимость сердца обеспечивает распространение возбуждения от клеток водителей ритма по всему миокарду. Проведение возбуждения по сердцу осуществляется электрическим путем. Потенциал действия, возникающий в одной мышечной клетке, является раздражителем для других. Проводимость в разных участках сердца неодинакова и зависит от структурных особенностей миокарда и проводящей системы, толщины миокарда, а также от температуры, уровня гликогена, кислорода и микроэлементов в сердечной мышце.

Сократимость сердечной мышцы обусловливает увеличение напряжения или укорочение ее мышечных волокон при возбуждении. Возбуждение и сокращение являются функциями разных структурных элементов мышечного волокна. Возбуждение - это функция поверхностной клеточной мембраны, а сокращение - функция миофибрилл. Связь между возбуждением и сокращением, сопряжение их деятельности достигается при участии особого образования внутримышечного волокна- саркоплазматического ретикулума.

Сила сокращения сердца прямо пропорциональна длине его мышечных волокон, т. е. степени их растяжения при изменении величины потока венозной крови. Иными словами, чем больше сердце растянуто во время диастолы, тем оно сильнее сокращается во время систолы. Эта особенность сердечной мышцы, установленная О. Франком и Е. Старлингом, получила название закона сердца Франка-Старлинга.

Поставщиками энергии для сокращения сердца служат АТФ и КрФ, восстановление которых осуществляется окислительным и гликолитическим фосфорилированием. При этом предпочтительными являются аэробные реакции.

В процессе возбуждения и сокращения миокарда в нем возникают биотокии сердце становится электрогенератором. Ткани тела, обладая высокой электропроводностью, позволяют регистрировать усиленные электрические потенциалы с различных участков его поверхности. Запись биотоков сердца называется электрокардиографией, а ее кривые- электрокардиограммой, которая впервые была записана в 1902 г В. Эйнтховеном.

Для регистрации ЭКГ у человека применяют 3 стандартных отведения, при этом электроды накладывают на поверхность конечностей: I - правая рука-левая рука, II -правая рука-левая нога, III-левая рука-левая нога. Помимо стандартных применяют однополюсные грудные отведения и усиленные отведения от конечностей.

При анализе ЭКГ определяют величину зубцов в милливольтах и длину интервалов между ними в долях секунды. В каждом сердечном цикле различают зубцы Р, Q, R, S,T. Зубец Р отражает возбуждение предсердий, интервал P-Q - время проведения возбуждения от предсердия к желудочкам. Комплекс зубцов QRS характеризует возбуждение желудочков, а интервал S-T и зубец Т - процессы восстановления в желудочках, т. е. их реполяризацию. Интервал Q-T, называемый электрической систолой, отражает распространение электрических процессов в миокраде, т. е. его возбуждение. Время возбуждения миокарда зависит от продолжительности сердечного цикла, которую удобнее всего определять по интервалу R-R

По показателям ЭКГ можно судить об автоматии, возбудимости, сократимости и проводимости сердечной мышцы. Особенности автоматии сердца проявляются в изменениях частоты и ритма зубцов ЭКГ, характер возбудимости и сократимости - в динамике ритма и высоте зубцов, а особенности проводимости - в продолжительности интервалов.

Ритм работы сердца зависит от возраста, пола, массы тела, тренированности. У молодых здоровых людей частота сердечных сокращений составляет 60-80ударов в 1 минуту. Ч СС менее 60 ударов в 1 мин. называется брадикардией, аболее90-тахикардией. У здоровых людей может наблюдаться синусовая аритмия, при которой разница в продолжительности сердечных циклов в покое составляет 0.2-0.3 с и более. Иногда аритмия связана с фазами дыхания, она обусловлена, преобладающими влияниями блуждающего или симпатического нервов. В этих случаях сердцебиения учащаются при вдохе и урежаются при выдохе.

Безостановочное движение крови по сосудам обусловлено ритмическими сокращениями сердца, которые чередуются с его расслаблением. Сокращение сердечной мышцы называется систолой , а ее расслабление - диастолой . Период, включающий систолу и диастолу, составляет сердечный цикл. Он состоит из трех фаз: систолы предсердий, систолы желудочков и общей диастолы сердца. Длительность сердечного цикла зависит от ЧСС. При сердечном ритме 75 ударов в 1 мин. она составляет 0.8 с, при этом систола предсердия равна 0.1 с, систола желудочков - 0.33 с и общая диастола сердца - 0.37 с.

Левый и правый желудочки при каждом сокращении сердца человека изгоняют соответственно в аорту и легочные артерии примерно 60-80 мл крови; этот объем называется систолическим или ударным объемом крови. Умножив УОК на ЧСС, можно вычислить минутный объем крови, который составляет в среднем 4.5-5 л.

Сердечная мышца обладает возбудимостью, проводимостью, сократимостью (как и скелетная мышца) и автоматией. Автоматия – это способность клеток или тканей возбуждаться под влиянием импульсов возникающих в них самих без внешних раздражителей.

В сердце импульсы возникают и распространяются по проводящей системе сердца. В состав проводящей системы входит:

1) синусный узел (располагается в устье падения полых вен). Это водитель ритмов 1го порядка. Он генерирует импульсы с частотой 60-80 в мин.

2) атриовентрикулярный узел, располагается на границе предсердий желудочками. Генерирует импульсы с частотой 40-60 в мин.

3) правые, левые ножки пучка Гисса. Проходят по межжелудочковой перегородке. Генерирует импульсы с частотой 15-30 в мин.

4) волокна Пуркинье. Располагаются в толще стенок желудочков. 5-10 в мин.

Скорость проведения возбуждений по миокард предсердия и желудочков составляет 1 м/с. Возбуждение сердечной мышцы, как и др. возбудимых тканей сопровождается изменением разности элек-х потенциалов между внутренней и наружной поверхностью мышечного волокна. Продолжительность потенциала действия изменяется в зависимости от ритма сокращений. После возбуждения сердечная мышца становится невозбудимой на раздражение любой силы. Это состояние не возбудимости называется абсолютной рефрактерностью.

32. Сердечный цикл

Сокращения отделов сердца называется систолой, а расслабление – диастолой.

Началом является сокращение предсердий. Это 1 фаза. При систоле предсердий давление крови повышается в них до 5-8 мм.рт.ст. и кровь поступает из предсердий в желудочки, где давление ниже. Длится систола 0,1 с. Затем наступает систола желудочка. А предсердия в этот момент расслабляются и начинается в этом состоянии 0,8 с. Систола желудочков состоит из 2х фаз: 1) фаза напряжения; 2) фаза изгнания.

Фазу напряжения в желудочках р продолжает повышаться, створчатые клапаны смыкаются, что препятствует обратному току крови, а когда р становится в желудочках выше, чем в аорте ствола, кровь под большим давлением выбрасывается в сосуды. При расслаблении р в аорте лёгочном стволе становится выше, смыкаются полулунные клапаны и кровь движется по сосудам. Систолы живут (желудочк) 0,3 сек, диаст – 0,5 сек. Диастола желудочков частично совпадает с диастолой предсердий. Полный сердечный цикл 0,8 сек.

РЕГУЛЯЦИЯ РАБОТЫ СЕРДЦА

Осуществляется нервным и гуморальным путём. Основной центр – сосудодвигательный, который находится в продолговатом мозге. К сердцу подходит симпатические и парасимпатические волокна. Симпатические волокна увеличивают силу, частоту и амплитуду сердечных сокращений. Парасимпатические волокна оказывают противоположный эффект. В регуляции сердца участ и кора мозга. Так у спортсменов на старте чсс соответствует частоте как во время бега. Различные эмоциональные проявления человека: гнев, радость, печаль – приводит к изменению чсс. На сердце реализуются многие межсердечные рефлексы, благодаря которым обеспечивается соответствие сердечной деятельности потребностям организма.

В самом сердце есть также большое количество рецепторов, которые располагаются во всех … слоях. Раздражение этих рецепторов изменяет работу сердца. Например, при растяжении кровью правого предсердия идёт учащение сердечных сокращений (рефлексы Бейнбриджа). Гуморальная регуляция усиливает и способствует увеличению чсс гормоны: адреналин, норадреналин, гормон щитовидной железы – тираксил. Замедляет работу сердца – ацетилхолин, имеет значение и содержание электролитов. Например, избыток К угнетает деятельность сердца. Избыток Са наоборот.

СОСУДИСТАЯ СИСТЕМА

Ближайшие к сердцу артерии выполняют функции проведения крови. Они превращают её в прерывистый ток в непрерывный. Поэтому в стенке крупных артерий развиты эластичные волокна и мембраны. Эти сосуды называются артериями эластичного типа. В средних и мелких артериях инерция сердечного выброса ослабевает. И для дальнейшего движения крови требуется собственное сокращение стенки. В стенках этих артерий много гладких мышечных волокон. Это артерии мышечного типа. Далее следуют артериолы. В местах их разветвлений находятся скопления мышечных клеток – это свинкторы. Благодаря им обеспечивается перераспределение кровотока в пользу работающих органов. Капилляры служат для обмена газа и питательных веществ. Благодаря медленному кровотоку и огромной площади соприкосновения с окружающими тканями капилляры обеспечивают обменные процессы. По венам кровь движется в противоположном направлении, чтобы не было ритоградного движения крови, в венах находятся клапаны. Все сосуды соответственно их строению и функции делят на 3 группы: 1) присердечные сосуды: начинаются и заканчиваются в отделах сердца (аорта, верхние и нижние полые вены, лёгочный ствол и лёгочные вены);

2) магистральные сосуды служат для распределения крови по организму. К ним относят экстроорганные артерии типа мышечных (волок), ЖКТ

3) внутриорганные сосуды (внутриорганные артерии и вены) и микроциркуляторные русла (артериолы, капилляры).

ВЕНТИЛЯЦИЯ ЛЁГКИХ

Это объём выдыхаемого и вдыхаемого воздуха в единицу времени. Обычно измеряют минутный объём дыхания (мод). При спокойном дыхании мод составляет 6-9 л.

Вентиляция лёгких зависит от глубины и частоты дыхания.

Газообмен в лёгких осуществляется в альбиолах. Вентиляция альбиол ‹ вентиляции лёгких на величину мёртвого пространства. При нагрузке более эффективно глубокое дыхание чем поверхностное, т.к. большая часть объёма воздуха при поверхностном дыхании тратится на вентиляцию мёртвого пространства.

МОД = 800 мл

ДВИЖЕНИЕ КРОВИ ПО СОСУДАМ

Благодаря сокращениям сердца кровь выталкивается в большой и малый круги кровообращения, т.к. кровеносные сосуды представляют собой систему трубок, то движение крови подчиняется законам гидродинамики. Согласно этим законам движения жидкости определяется: давлением, под которым движется жидкость и сопротивлением, которое испытывает жидкость при трении о стенки сосуда. Количество жидкости, протекающее через трубу прямо пропорционально разности давлений в начале и в конце трубы и обратно пропорционально сопротивлению.

Т.к. р в конце системы = 0, следовательно, Q= P/R

P – кол-во ср. р в аорте;

Q – кол-во крови изгоняемое сердцем в мин.;

R – величина сосудистого сопротивления;

В отличие от движения жидкости по трубам кровь движется прерывистой струёй во время систолы. Но уже довольно быстро ток крови становится не прерывистым. Благодаря упругости стенок аорты, лёгочного ствола и крупных артерий. Часть кинетической энергии во время систолы затрачивается на растяжение стенок крупных артериальных сосудов. Когда систола заканчивается, стенки артерий в силу своей эластичности возвращается к исходному состоянию и обеспечивают р, которое в фазу диастолы перемещает кровь по сосудам. Периферическое сопротивление сосудистой системы складывается из множества сопротивлений каждого сосуда. Наибольшее сопротивление возникает в артериолах, поэтому систему артериол называют сосудами сопротивления или резистивными сосудами. Вследствие сопротивления уровень р в крови меняется. В крупных сосудах р падает ≈ на 10% от исходного уровня. А в артериолах и капиллярах на 85%. В малом круге кровообращения сопротивление в 5 ‹ чем в большом. Однако и в малом круге наибольшее сопротивление оказывают мельчайшие артерии и артериолы.

Сердце по праву — самый главный орган человека, ведь оно перекачивает кровь и отвечает циркуляцию по организму растворенного кислорода и других питательных веществ. Его остановка на несколько минут может вызвать необратимые процессы, дистрофию и отмирание органов. По этой же причине болезни и остановка сердца являются одной из самых распространенных причин смертности.

Какой тканью образовано сердце

Сердце – полый орган размером примерно с кулак человека. Оно практически полностью образовано мышечной тканью, поэтому многие сомневаются: сердце – это мышца или орган? Правильный ответ на этот вопрос – орган, образованный мышечной тканью.

Сердечная мышца называется миокард, ее строение существенно отличается от остальной мышечной ткани: образована она клетками-кардиомиоцитами. Сердечная мышечная ткань имеет поперечнополосатую структуру. В ее составе есть тонкие и толстые волокна. Микрофибриллы – скопления клеток, которые образуют мышечные волокна, собраны в пучки разной длины.

Свойства сердечной мышцы – обеспечение сокращения сердца и перекачивание крови .

Где находится сердечная мышца? Посередине, между двумя тонкими оболочками:

  • Эпикардом;
  • Эндокардом.

На долю миокарда приходится максимальное количество массы сердца.

Механизмы, которые обеспечивают сокращение:

В цикле работы сердца выделяют две фазы:

  • Относительную, при которой клетки реагируют на сильные раздражители;
  • Абсолютную – когда на протяжении определенного промежутка времени мышечная ткань не реагирует даже на очень сильные раздражители.

Механизмы компенсации

Нейроэндокринная система защищает сердечную мышцу от перегрузок и помогает сохранить здоровье. Она обеспечивает передачу «команд» миокарду, когда нужно увеличить частоту сердечных сокращений.

Причиной для этого может стать:

  • Определенное состояние внутренних органов;
  • Реакция на условия окружающей среды;
  • Раздражители, в т. ч. нервные.

Обычно в этих ситуациях в большом количестве вырабатывается адреналин и норадреналин, чтобы «уравновесить» их действие, требуется увеличение количества кислорода. Чем чаще ЧСС, тем больший объем насыщенной кислородом крови разносится по организму.

Особенности строения сердца

Сердце взрослого человека весит примерно 250-330 г. У женщин размер этого органа меньше, как и объем перекачиваемой крови.

Состоит оно из 4 камер:

  • Двух предсердий;
  • Двух желудочков.

Через правую часто сердца проходит малый круг кровообращения, через левый – большой. Поэтому стенки левого желудочка обычно больше: чтобы за одно сокращение сердце могло вытолкнуть больший объем крови.

Направление и объем выталкиваемой крови контролируют клапаны:

  • Двухстворчатый (митральный) – с левой стороны, между левым желудочком и предсердием;
  • Трехстворчатый – с правой стороны;
  • Аортальный;
  • Легочный.

Патологические процессы в сердечной мышце

При небольших сбоях в работе сердца включается компенсаторный механизм. Но нередки состояния, когда развивается патология, дистрофия сердечной мышцы.

К этому приводят:

Мышечные волокна становятся тоньше, а недостаток объема заменяется фиброзной тканью. Дистрофия обычно возникает «в связке» с авитаминозами, интоксикациями, анемией, нарушениями в работе эндокринной системы.

Наиболее частыми причинами такого состояния являются:

  • Миокардит (воспаление сердечной мышцы);
  • Атеросклероз аорты;
  • Повышенное артериальное давление.

Если болит сердце: наиболее частые заболевания

Сердечных заболеваний довольно много, и не всегда они сопровождаются болью именно в этом органе.

Часто в этой области отдаются болевые ощущения, возникающие в других органах:

  • Желудке;
  • Легких;
  • При травме грудной клетки.

Причины и характер боли

Болевые ощущения в области сердца бывают:

  1. Острыми , пронизывающими, когда человеку больно даже дышать. Они указывают на острый сердечный приступ, инфаркт и другие опасные состояния.
  2. Ноющая возникает как реакция на стресс, при гипертонии, хронических заболеваниях сердечнососудистой системы.
  3. Спазм , который отдает в руку или лопатку.


Часто боль в сердце связана с:

  • Эмоциональными переживаниями.
  • Но нередко возникает и в состоянии покоя.

    Все боли в этой области можно разделить на две основные группы:

    1. Ангинозные, или ишемические – связаны с недостаточным кровоснабжением миокарда. Часто возникают на пике эмоциональных переживания, также при некоторых хронических заболеваниях стенокардии, гипертонии. Характеризуется ощущением сдавливания или жжения разной интенсивности, часто отдает в руку.
    2. Кардиологические беспокоят пациента практически постоянно . Носят слабый ноющий характер. Но боль может становиться резкой при глубоком вдохе или физических нагрузках.


    Как всякая мышца, сердечная мышца обладает: возбудимостью, т. е. способностью отвечать возбуждением на раздражение, сократимостью. т. е. способностью сокращаться, и проводимостью, т. е. способностью проводить возбуждение. Кроме того, сердце обладает способностью к ритмической автоматии.

    Возбудимость . Сердечная мышца способна возбуждаться электрическими, механическими, термическими и химическими раздражителями. При действии любого из этих раздражителей могут возникнуть возбуждение и сокращение сердечной мышцы. Для этого, однако, необходимо, чтобы сила раздражения была равна или превышала пороговую силу. Раздражения слабее пороговых не вызывают возбуждения и сокращения.

    Возбуждение сердечной мышцы . О возбуждении мышечных клеток сердцем, как и любой другой возбудимой ткани, можно судить по изменению разности электрических потенциалов, существующей между возбужденным участком и невозбужденным или между протоплазмой клетки и ее внешней средой.

    Рефрактерность сердечной мышцы . Во время возбуждения сердечная мышца утрачивает способность отвечать второй вспышкой возбуждения на искусственное раздражение или на приходящий к ней импульс от очага автоматии. Такое состояние невозбудимости называют абсолютной рефрактерностью.

    Сокращение сердечной мышцы . Возбуждение сердечной мышцы вызывает ее сокращение, т. е. увеличение ее напряжения или укорочение длины мышечных волокон. Сокращение сердечной мышцы так же, как и волна возбуждения в ней, длится дольше, чем сокращение и возбуждение скелетной мышцы, вызванные одним отдельным стимулом, например замыканием или размыканием постоянного тока. Период сокращения отдельных мышечных волокон сердца примерно соответствует длительности потенциала действия. При частом ритме деятельности сердца укорачивается и продолжительность потенциала действия, и длительность сокращения.

    Механизм и скорость проведения возбуждения в сердце . Проведение возбуждения в миокарде осуществляется электрическим путем; потенциал действия, возникший в возбужденной мышечной клетке, служит раздражителем для соседних клеток.

    Амплитуда потенциала действия в мышечных клетках сердца в 4-5 раз превышает пороговый уровень деполяризации мембраны, необходимый для того, чтобы возник в соседних клетках распространяющийся потенциал действии. Следовательно, потенциал действия по своей амплитуде сверхдостаточен для вызова возбуждения в соседних клетках. Ото является важным приспособлением, обеспечивающим надежность проведения возбуждения по проводящей системе и миокарду предсердий и желудочков.

    Скорость проведения возбуждения в разных отделах сердца неодинакова. По миокарду предсердий у теплокровных животных возбуждение распространяется со скоростью 0,8-1 м/сек. В проводящей системе желудочков, состоящей из волокон Пуркине, скорость проведения возбуждения больше и достигает 2-4,2 м/сек. По миокарду желудочков возбуждение распространяется со скоростью 0,8-0,9 м/сек.

    При переходе возбуждения от мышечных волокон предсердий к клеткам атриовентрикулярного узла происходит задержка проведения импульса. Недавние исследования Гоффмана и Кренфильда с применением микроэлектродной техники показали, что на коротком участке длиной 1 мм в верхней части атриовентрикулярного узла распространение возбуждения замедляется и оно проводится с очень малой скоростью — 0,02-0,05 м/сек.

    Задержка проведения импульса в атриовентрикулярном узле обусловливает более позднее начало возбуждения желудочков по сравнению с предсердиями. Это имеет важное физиологическое значение для согласованной работы отделов сердца. Именно поэтому возбуждение желудочков начинается лишь но прошествии 0,12-0,18 секунды после того, как начинается возбуждение предсердий.

    Миокард — сердечная мышца, представляет собой толстую часть сечения стенки сердца и содержит кардиомиоциты — сократительные клетки сердца. Миокард является уникальной мышцей в организме человека, больше такого типа мышц у человека нигде нет. От толщины миокарда зависит способность и сила сердца перекачивать кровь.

    Свойства сердечной мышцы

    Расположен миокард между наружным слоем эпикарда и внутренним слоем эндокарда.

    Миокард является такой мышцей, которая в отличии от скелетных мышц приспособлена быть устойчивой к утомлению (усталости). Это достигается за счет того, что кардиомиоциты имеют большое количество митохондрий, что способствует поддержанию постоянного аэробного дыхания. Кроме того, миокард имеет большой запас крови по сравнению со своими размерами, обеспечивающей ее непрерывным потоком питательных веществ и кислородом, удаляя тем самым отходы метаболизма гораздо быстрее и эффективнее.

    Основное назначение миокарда — это организация ритмических движений сердца, заключающееся в непрерывных автоматических сокращениях и расслаблениях мышечных волокн.

    Строение миокарда

    В некоторых характеристиках миокард имеет схожести с другими мышцами, но имеет множество своих особенностей. Кардиомиоциты гораздо короче своих родственников — миоцитов, имеют меньше ядер. Каждое мышечное волокно подсоединяется к плазменной мембране (сарколемме) с особыми трубочками (Т-канальцами). В этих Т-канальцах сарколемма шипована большим количеством кальциевых каналов, позволяющих протекать кальций-ионному обмену гораздо быстрее чем у нервно-мышечного соединения в скелетных мышцах. Сокращение мышечных клеток миокарда происходит за счет стимулирования потенциала действия потоком ионов кальция.

    Как и другие мышцы, миокард состоит из саркомеров, которые являются основными сократительными единицами мышц. Саркомер имеет длину от 1.6 до 2.2 мкм. Саркомер содержит светлые и темные полоски. В центре проходит темная полоска, которая имеет постоянную длину, равную 1.5 мкм. Саркомеров состоят из длинных, скользящих друг с другом, когда мышцы сокращаются и расслабляются, волокнистых белков. Основные два белка, обнаруженные в саркомерах это миозин , образующий густые нити, а также актин , который образует тонкие нити. Анатомически миозин имеет длинный волнистый хвост и шаровидную головку, которая связывается с актином. Головка миозина кроме того, связывается с АТФ, являющейся источником энергии для клеточного метаболизма, необходима для кардиомиоцитов, чтобы поддерживать их функции в нормальном состоянии. Совместно миозин и актин формируют миофибриллярные нити, которые представляют собой удлиненные, сократительные нити, находящиеся в мышечной ткани. Как и скелетные мышцы, миокард содержит белок миоглобин, который хранит кислород.

    Внутри сердца, миокард имеет разную толщину. Так сердечные камеры с более толстым слоем миокарда способны перекачивать кровь под более большим давлением и силой, по сравнению с камерами имеющими более тонкие слои миокарда. Самый тонкий слой миокарда расположен в предсердиях, так как данные камеры в первую очередь заполняются кровью через пассивный кровоток. В правом желудочке миокард гораздо толще, так как данная часть сердечной мышцы должна перекачивать большой объем крови, возвращающуюся в легкие для насыщения кислородом. Самый толстый слой миокарда расположен в левом желудочке, так как данная часть сердца должна качать кровь через аорту по всей системе кровообращения.

    Толщина миокарда также может меняться у каждого человека, в связи с перенесенными заболеваниями, она может быть толще и жестче, либо тоньше и стать дряблой. Например гипертония приводит к гипертрофии сердечной мышцы, когда клетки миокарда увеличивают адаптивный ответ в связи с высоким кровяным давлением. Гипертрофия сердечной мышцы в конце концов может привести к остановке сердца когда миокард становится настолько жестким, что сердце больше не может качать кровь. Дряблая (слабая) сердечная мышца миокард становится такой после перенесенных инфекций и инфарктов. Сердечная мышца в данном случае становится настолько слабой, но не справляется с перекачиванием крови, развивается сердечная недостаточность.

    Возбуждение сердечной мышцы вызывает ее сокращение, т. е. увеличение ее напряжения или укорочение длины мышечных волокон. Сокращение сердечной мышцы так же, как и волна возбуждения в ней, длится дольше, чем сокращение и возбуждение скелетной мышцы, вызванные одним отдельным стимулом, например замыканием или размыканием постоянного тока. Период сокращения отдельных мышечных волокон сердца примерно соответствует длительности потенциала действия. При частом ритме деятельности сердца укорачивается и продолжительность потенциала действия, и длительность сокращения.

    Как правило, всякая волна возбуждения сопровождается сокращением. Однако возможен и разрыв связи между возбуждением и сокращением. Так, при длительном пропускании через изолированное сердце раствора Рингера, из которого исключена соль кальция, ритмические вспышки возбуждения, а следовательно, и потенциалы действия, сохраняются, а сокращения прекращаются.

    Строение сердечной мышцы человека, ее свойства и какие процессы проходят в сердце

    Эти и ряд других опытов показывают, что ионы кальция необходимы для сократительного процесса, но не являются необходимыми для возбуждения мышцы.

    Разрыв связи между возбуждением и сокращением.можно наблюдать также в умирающем сердце: ритмические колебания электрических потенциалов еще происходят, тогда как сокращения сердца уже прекратились.

    Непосредственным поставщиком энергии, затрачиваемой в первый момент сокращения сердечной мышцы, как и скелетной мышцы, являются макроэргические фосфорсодержащие соединения - аденозинтрифосфат и креатинфосфат. Ресинтез этих соединений происходят за счет энергии дыхательного и гликолитического фосфорилирования, т. е. за счет энергии, поставляемой углеводами. В сердечной мышце преобладают аэробные процессы, идущие с использованием кислорода, над анаэробными, которые значительно более интенсивно происходят в скелетной мускулатуре.

    Соотношение между исходной длиной волокон сердечной мышцы и силой их сокращения . Если увеличить приток раствора Рингера к изолированному сердцу, т. е. увеличить наполнение и растяжение стенок желудочков, то сила сокращения сердечной мышцы увеличивается. То же самое можно наблюдать, если подвергнуть небольшому растяжению полоску сердечной мышцы, вырезанную из стенки сердца: при растяжении сила ее сокращения увеличивается.

    На основании подобных фактов установлена зависимость силы сокращения волокон сердечной мышцы от их длины перед началом сокращения. Эта зависимость положена и основу сформулированного Старлингом «закона сердца». Согласно данному эмпирически установленному закону, верному лишь для определенных условий, сила сокращения сердца тем больше, чем больше растяжение мышечных волокон в диастолу.

    Лекции 2-й семестр.

    Лекция № 1 Физиология сердечно-сосудистой системы.

    К системе кровообращения относятся сердце и сосуды – кровеносные и лимфатические. Основное значение системы кровообращения состоит в снабжении кровью органов и тканей. Сердце представляет собой биологический насос, благодаря работе которого кровь движется по замкнутой системе сосудов. В организме человека имеется 2 круга кровообращения.

    Большой круг кровообращения начинается аортой, которая отходит от левого желудочка, и заканчивается сосудами, впадающими в правое предсердие. Аорта дает начало крупным, средним и мелким артериям. Артерии переходят в артериолы, которые заканчиваются капиллярами.

    Капилляры широкой сетью пронизывают все органы и ткани организма. В капиллярах кровь отдает тканям кислород и питательные вещества, а из них в кровь поступают продукты обмена веществ, в том числе и углекислый газ.

    Физиологические свойства сердечной мышцы.

    Капилляры переходят в венулы, кровь из которых попадает в мелкие, средние и крупные вены. Кровь от верхней части туловища поступает в верхнюю полую вену, от нижней – в нижнюю полую вену. Обе эти вены впадают в правое предсердие, где заканчивается большой круг кровообращения

    Малый круг кровообращения (легочный) начинается легочным стволом, который отходит от правого желудочка и несет в легкие венозную кровь. Легочный ствол разветвляется на две ветви, идущие к левому и правому легкому. В легких легочные артерии делятся на более мелкие артерии, артериолы и капилляры. В капиллярах кровь отдает углекислый газ и обогащается кислородом. Легочные капилляры переходят в венулы, которые затем образуют вены. По четырем легочным венам артериальная кровь поступает в левое предсердие.

    Сердце – полый мышечный орган. Сплошной вертикальной перегородкой сердце делится на левую и правую половины. Горизонтальная перегородка вместе с вертикальной делит сердце на четыре камеры. Верхние камеры – предсердия, нижние – желудочки.

    Стенка сердца состоит из трех слоев. Внутренний слой представлен эндотелиальной оболочкой (эндокард , выстилает внутреннюю поверхность сердца). Средний слой (миокард ) состоит из поперечнополосатой мышцы. Наружная поверхность сердца покрыта серозной оболочкой (эпикард ), являющейся внутренним листком околосердечной сумки – перикарда. Перикард (сердечная сорочка) окружает сердце, как мешок, и обеспечивает его свободное движение.

    Клапаны сердца. Левое предсердие от левого желудочка отделяет двустворчатый клапан . На границе между правым предсердием и правым желудочком находится трехстворчатый клапан . Клапан аорты отделяет ее от левого желудочка, а клапан легочного ствола отделяет его от правого желудочка.

    При сокращении предсердий (систола ) кровь из них поступает в желудочки. При сокращении желудочков кровь с силой выбрасывается в аорту и легочный ствол. Расслабление (диастола ) предсердий и желудочков способствует наполнению полостей сердца кровью.

    Значение клапанного аппарата. Во время диастолы предсердий предсердно-желудочковые клапаны открыты, кровь, поступающая из соответствующих сосудов, заполняет не только их полости, но и желудочки. Во время систолы предсердий желудочки полностью заполняются кровью. При этом исключается возврат крови в полые и легочные вены. Это связано с тем, что в первую очередь сокращается мускулатура предсердий, образующая устья вен. По мере наполнения полостей желудочков кровью створки предсердно-желудочковых клапанов плотно смыкаются и отделяют полость предсердий от желудочков.

    В результате сокращения сосочковых мышц желудочков в момент их систолы сухожильные нити створок предсердно-желудочковых клапанов натягиваются и не дают им вывернуться в сторону предсердий.

    К концу систолы желудочков давление в них становится больше давления в аорте и легочном стволе. Это способствует открытию полулунных клапанов аорты и легочного ствола , и кровь из желудочков поступает в соответствующие сосуды.

    Таким образом, открытие и закрытие клапанов сердца связано с изменением величины давления в полостях сердца. Значение же клапанного аппарата состоит в том, что он обеспечивает движение крови в полостях сердца в одном направлении.

    Основные физиологические свойства сердечной мышцы.

    Возбудимость. Сердечная мышца менее возбудима, чем скелетная. Реакция сердечной мышцы не зависит от силы наносимых раздражений. Сердечная мышца максимально сокращается и на пороговое и на более сильное по величине раздражение.

    Проводимость. Возбуждение по волокнам сердечной мышцы распространяется с меньшей скоростью, чем по волокнам скелетной мышцы. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8-1,0 м/с, по волокнам мышц желудочков – 0,8-0,9 м/с, по проводящей системе сердца – 2,0-4,2 м/с.

    Сократимость. Сократимость сердечной мышцы имеет свои особенности. Первыми сокращаются мышцы предсердий, затем – сосочковые мышцы и субэндокардиальный слой мышц желудочков. В дальнейшем сокращение охватывает и внутренний слой желудочков, обеспечивая движение крови из полостей желудочков в аорту и легочный ствол.

    К физиологическим особенностям сердечной мышцы относятся удлиненный рефрактерный период и автоматизм

    Рефрактерный период. Сердце имеет значительно выраженный и удлиненный рефрактерный период. Он характеризуется резким снижением возбудимости ткани в период ее активности. Благодаря выраженному рефрактерному периоду, который длится дольше, чем период систолы (0,1-0,3с), сердечная мышца не способна к тетаническому (длительному) сокращению и совершает свою работу по типу одиночного мышечного сокращения.

    Автоматизм. Вне организма при определенных условиях сердце способно сокращаться и расслабляться, сохраняя правильный ритм.

    Следовательно, причина сокращений изолированного сердца лежит в нем самом. Способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом, носит название автоматизма.



    Выбор редакции
    Биатлон уже давно занял почетное место среди наиболее зрелищных видов спорта. Он давно входит в программу Олимпийских игр, но это не...

    Количество белка, который человек должен получать с пищей при условии регулярного выполнения тренировок, составляет 1,4 г на килограмм...

    Любой из нас желает иметь идеальную фигуру, в частности упругий и подтянутый живот. Поэтому упражнения на так популярны. Они не слишком...

    Упражнения со скакалкой знакомы нам еще с детства. Но актуальность этого простейшего тренажера не теряется никогда – это прекрасный...
    Кардиотренировка – это самостоятельное занятие, при котором повышается работоспособность организма и увеличивается интенсивность сжигания...
    7 Мар 2016 Как выбрать лыжероллеры Как выбрать лыжероллеры Лыжероллеры традиционно делят на два вида: лыжероллеры для классического хода...
    Физкультура и спорт Внешняя и внутренняя сторона нагрузки. Компоненты тренировочной нагрузки. Эффект нагрузки прямо пропорционален при...
    Нападающие действия можно условно разделить на три группы: 1) полноценные атакующие удары 2) кистевые удары 3) скидки Помимо выше...
    Кайса Макаряйнен - трехкратная обладательница Кубка мира/ IBU 26 ноября стартовал олимпийский сезон 2017/2018. Ведущие сборные мира,...